A Semantic VSM-Based Recommender System
نویسندگان
چکیده
—Online forums enable users to discuss together around various topics. One of the serious problems of these environments is high volume of discussions and thus information overload problem. Unfortunately without considering the users interests, traditional Information Retrieval (IR) techniques are not able to solve the problem. Therefore, employment of a Recommender System (RS) that could suggest favorite's topics of users according to their tastes could increases the dynamism of forum and prevent the users from duplicate posts. In addition, consideration of semantics can be useful for increasing the performance of IR based RS. Our goal is study of impact of ontology and data mining techniques on improving of content-based RS. For this purpose, at first, three type of ontologies will be constructed from the domain corpus with utilization of text mining, Natural Language Processing (NLP) and Wordnet and then they will be used as an input in two kind of RS: one, fully ontology-based and one with enriching the user profile vector with ontology in vector space model (VSM) (proposed method). Afterward the results will be compared with the simple VSM based RS. Given results show that the proposed RS presents the highest performance
منابع مشابه
Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems
One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...
متن کاملIMPROVE THE RECOMMENDER SYSTEM USING SEMANTIC WEB
To buy his/her necessities such as books, movies, CD, music, etc., one always trusts others’ oral and written consultations and offers and include them in his/her decisions. Nowadays, regarding the progress of technologies and development of e-business in websites, a new age of digital life has been commenced with the Recommender systems. The most important objectives of these systems include a...
متن کاملModeling a semantic recommender system for medical prescriptions and drug interaction detection
Introduction: The administration of appropriate drugs to patients is one of the most important processes of treatment and requires careful decision-making based-on the current conditions of the patient and its history and symptoms. In many cases, patients may require more than one drug, or in addition to having a previous illness and receiving the drug, they need new drugs for the new illness, ...
متن کاملRandom Indexing and Negative User Preferences for Enhancing Content-Based Recommender Systems
The vector space model (VSM) emerged for almost three decades as one of the most effective approaches in the area of Information Retrieval (IR), thanks to its good compromise between expressivity, effectiveness and simplicity. Although Information Retrieval and Information Filtering (IF) undoubtedly represent two related research areas, the use of VSM in Information Filtering is much less analy...
متن کاملRandom Indexing for Content-Based Recommender Systems
The use of Vector Space Models (VSM) in the area of Information Retrieval is an established practice, thanks to its very clean and solid formalism that allows us to easily represent objects in a vector space and to perform calculations on them. The goal of this work is to investigate the impact of VSM on Recommender Systems (RS) performance. Specifically, we will introduce two approaches: the f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1406.3277 شماره
صفحات -
تاریخ انتشار 2014